Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background/Objective: Environmental exposures, such as heavy metals, can significantly affect physical activity, an important determinant of health. This study explores the effect of physical activity on combined exposure to cadmium, lead, and mercury (metals), using data from the 2013–2014 National Health and Nutrition Examination Survey (NHANES). Methods: Physical activity was measured with ActiGraph GT3X+ devices worn continuously for 7 days, while blood samples were analyzed for metal content using inductively coupled plasma mass spectrometry. Descriptive statistics and multivariable linear regression were used to assess the impact of multi-metal exposure on physical activity. Additionally, Bayesian Kernel Machine Regression (BKMR) was applied to explore nonlinear and interactive effects of metal exposures on physical activity. Using a Gaussian process with a radial basis function kernel, BKMR estimates posterior distributions via Markov Chain Monte Carlo (MCMC) sampling, allowing for robust evaluation of individual and combined exposure-response relationships. Posterior Inclusion Probabilities (PIPs) were calculated to quantify the relative importance of each metal. Results: The linear regression analysis revealed positive associations between cadmium and lead exposure and physical activity. BKMR analysis, particularly the PIP, identified lead as the most influential metal in predicting physical activity, followed by cadmium and mercury. These PIP values provide a probabilistic measure of each metal’s importance, offering deeper insights into their relative contributions to the overall exposure effect. The study also uncovered complex relationships between metal exposures and physical activity. In univariate BKMR exposure-response analysis, lead and cadmium generally showed positive associations with physical activity, while mercury exhibited a slightly negative relationship. Bivariate exposure-response analysis further illustrated how the impact of one metal could be influenced by the presence and levels of another, confirming the trends observed in univariate analyses while also demonstrating the complexity varying doses of two metals can have on either increased or decreased physical activity. Additionally, the overall exposure effect analysis across different quantiles revealed that higher levels of combined metal exposures were associated with increased physical activity, though there was greater uncertainty at higher exposure levels as the 95% credible intervals were wider. Conclusions: Overall, this study fills a critical gap by investigating the interactive and combined effects of multiple metals on physical activity. The findings underscore the necessity of using advanced methods such as BKMR to capture the complex dynamics of environmental exposures and their impact on human behavior and health outcomes.
Background/Objective: Environmental exposures, such as heavy metals, can significantly affect physical activity, an important determinant of health. This study explores the effect of physical activity on combined exposure to cadmium, lead, and mercury (metals), using data from the 2013–2014 National Health and Nutrition Examination Survey (NHANES). Methods: Physical activity was measured with ActiGraph GT3X+ devices worn continuously for 7 days, while blood samples were analyzed for metal content using inductively coupled plasma mass spectrometry. Descriptive statistics and multivariable linear regression were used to assess the impact of multi-metal exposure on physical activity. Additionally, Bayesian Kernel Machine Regression (BKMR) was applied to explore nonlinear and interactive effects of metal exposures on physical activity. Using a Gaussian process with a radial basis function kernel, BKMR estimates posterior distributions via Markov Chain Monte Carlo (MCMC) sampling, allowing for robust evaluation of individual and combined exposure-response relationships. Posterior Inclusion Probabilities (PIPs) were calculated to quantify the relative importance of each metal. Results: The linear regression analysis revealed positive associations between cadmium and lead exposure and physical activity. BKMR analysis, particularly the PIP, identified lead as the most influential metal in predicting physical activity, followed by cadmium and mercury. These PIP values provide a probabilistic measure of each metal’s importance, offering deeper insights into their relative contributions to the overall exposure effect. The study also uncovered complex relationships between metal exposures and physical activity. In univariate BKMR exposure-response analysis, lead and cadmium generally showed positive associations with physical activity, while mercury exhibited a slightly negative relationship. Bivariate exposure-response analysis further illustrated how the impact of one metal could be influenced by the presence and levels of another, confirming the trends observed in univariate analyses while also demonstrating the complexity varying doses of two metals can have on either increased or decreased physical activity. Additionally, the overall exposure effect analysis across different quantiles revealed that higher levels of combined metal exposures were associated with increased physical activity, though there was greater uncertainty at higher exposure levels as the 95% credible intervals were wider. Conclusions: Overall, this study fills a critical gap by investigating the interactive and combined effects of multiple metals on physical activity. The findings underscore the necessity of using advanced methods such as BKMR to capture the complex dynamics of environmental exposures and their impact on human behavior and health outcomes.
Cet article se penche sur la façon dont les incertitudes et la confusion liées au danger des pesticides pour la santé se construisent au quotidien chez les professionnel·les agricoles du canton de Vaud (Suisse). S’appuyant sur les études de la « fabrique de l’ignorance » (Counil & Henry, 2016 ; Dedieu, 2022), l’article propose d’étudier le rôle des agriculteur·rices dans le maintien de la confusion autour de la toxicité de ces produits. En mettant l’accent sur les savoirs expérientiels (Rabeharisoa et al., 2014), l’article présente deux dynamiques de production de l’ignorance opérant dans ce contexte. D’une part, nous examinons le rôle central des expériences corporelles et sensibles dans la création d’une « ignorance loop » (Durant, 2020), soit un cycle itératif de co-constitution de l'ignorance. D’autre part, nous nous demandons comment les pratiques quotidiennes de gestion des pesticides influencent les dynamiques de confiance et de méfiance à l’œuvre dans le rapport des agriculteur·rices aux autorités qui homologuent et régulent les pesticides, ainsi que dans leur rapport à la science. Cette analyse souligne l’importance de la dépendance des agriculteur·rices au système agro-alimentaire, ainsi que les effets délétères de la stigmatisation à laquelle cette profession est confrontée, comme deux éléments majeurs participant à entretenir la confusion et l’ignorance sur la dangerosité des pesticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.