S/GSK1349572 is a next-generation HIV integrase (IN) inhibitor designed to deliver potent antiviral activity with a low-milligram once-daily dose requiring no pharmacokinetic (PK) booster. In addition, S/GSK1349572 demonstrates activity against clinically relevant IN mutant viruses and has potential for a high genetic barrier to resistance. S/GSK1349572 is a two-metal-binding HIV integrase strand transfer inhibitor whose mechanism of action was established through in vitro integrase enzyme assays, resistance passage experiments, activity against viral strains resistant to other classes of anti-HIV agents, and mechanistic cellular assays. In a variety of cellular antiviral assays, S/GSK1349572 inhibited HIV replication with low-nanomolar or subnanomolar potency and with a selectivity index of 9,400. The protein-adjusted half-maximal effective concentration (PA-EC 50 ) extrapolated to 100% human serum was 38 nM. When virus was passaged in the presence of S/GSK1349572, highly resistant mutants were not selected, but mutations that effected a low fold change (FC) in the EC 50 (up to 4.1 fold) were identified in the vicinity of the integrase active site. S/GSK1349572 demonstrated activity against site-directed molecular clones containing the raltegravir-resistant signature mutations Y143R, Q148K, N155H, and G140S/Q148H (FCs, 1.4, 1.1, 1.2, and 2.6, respectively), while these mutants led to a high FC in the EC 50 of raltegravir (11-to >130-fold). Either additive or synergistic effects were observed when S/GSK1349572 was tested in combination with representative approved antiretroviral agents; no antagonistic effects were seen. These findings demonstrate that S/GSK1349572 would be classified as a nextgeneration drug in the integrase inhibitor class, with a resistance profile markedly different from that of first-generation integrase inhibitors.Twenty-three compounds are currently approved for the treatment of HIV infection. These drugs can be assigned to six classes: nucleoside (nucleotide) reverse transcriptase inhibitors [N(t)RTIs], nonnucleoside reverse transcriptase inhibitors [NNRTIs], protease inhibitors [PIs], integrase inhibitors [INIs], CCR5 antagonists, and fusion inhibitors. The development of resistance to all currently marketed drugs has been observed and is a major reason for failure of therapy. Thus, the development of new, potent antiretroviral compounds with different resistance profiles and mechanisms of action is urgently needed for patients who have multidrugresistant HIV. In addition to these characteristics, an improved side effect profile and improved dosing convenience (oncedaily dosing, fixed-dose combination pills) are desirable, because they would promote high compliance, decrease the emergence of drug-resistant variants, and thus enhance the length and quality of life.After an initial period of false starts, advances in the field of HIV integrase drug discovery since the late 1990s have been outstanding. Beginning with the discovery that molecules capable of binding two metals within the int...