Extracellular matrix (ECM) biomaterials have shown promise for treating small artucular-joint defetcs. However, ECM-based biomaterials generally lack appropriate mechanical properties to support physiological loads and are prone to delamination in larger cartilage defects. To overcome these common mechanical limitations, a collagen hyaluronic-acid (CHyA) matrix, with proven regenerative potential, was reinforced with a bioabsorbable 3D-printed framework to support physiological loads. Polycaprolactone (PCL) was 3D-printed in two configurations, rectilinear and gyroid designs, that were extensively mechanically characterised. Both scaffold designs increased the compressive modulus of the CHyA matrices by three orders of magnitude, mimicking the physiological range (0.5-2.0 MPa) of healthy cartilage. The gyroid scaffold proved to be more flexible compared to the rectilinear scaffold, thus better contouring to the curvature of a femoral condyle. Additionally, PCL reinforcement of the CHyA matrix increased the tensile modulus and allowed for suture fixation of the scaffold to the subchondral bone, thus addressing the major challenge of biomaterial fixation to articular joint surfaces in shallow defects. In vitro evaluation confirmed successful infiltration of human mesenchymal stromal cells (MSCs) within the PCL-CHyA scaffolds, which resulted in increased production of sulphated glycosaminoglycans (sGAG/DNA; p = 0.0308) compared to non-reinforced CHyA matrices. Histological staining using alcian blue confirmed these results, while also indicating greater spatial distribution of sGAG throughout the PCL-CHyA scaffold. These findings have a great clinical importance as they provide evidence that reinforced PCL-CHyA scaffolds, with their increased chondroinductive potential and compatibility with joint fixation techniques, could be used to repair large-area chondral defects that currently lack effective treatment options.