This work proposes two different primal-dual splitting algorithms for solving structured monotone inclusion containing a cocoercive operator and the parallel-sum of maximally monotone operators. In particular, the parallel-sum is symmetry. The proposed primal-dual splitting algorithms are derived from two approaches: One is the preconditioned forward–backward splitting algorithm, and the other is the forward–backward–half-forward splitting algorithm. Both algorithms have a simple calculation framework. In particular, the single-valued operators are processed via explicit steps, while the set-valued operators are computed by their resolvents. Numerical experiments on constrained image denoising problems are presented to show the performance of the proposed algorithms.