While clines in environmental tolerance and phenotypic plasticity along a single species’ range are widespread and of special interest in the context of adaptation to environmental changes, we know little about their evolution. Recent empirical findings in ectotherms suggest that processes underlying dynamic species’ ranges can give rise to spatial differences in environmental tolerance and phenotypic plasticity within species. We used individual-based simulations to investigate how plasticity and tolerance evolve in the course of three scenarios of species’ range shifts and range expansions on environmental gradients. We found that regions of a species’ range which experienced a longer history or larger extent of environmental change generally exhibited increased plasticity or tolerance. Such regions may be at the trailing edge when a species is tracking its ecological niche in space (e.g., in a climate change scenario) or at the front edge when a species expands into a new habitat (e.g., in an expansion/invasion scenario). Elevated tolerance and plasticity in the distribution center was detected when asymmetric environmental change (e.g., polar amplification) led to a range expansion. Greater gene flow across the range had a dual effect on plasticity and tolerance clines, with an amplifying effect in niche expansion scenarios (allowing for faster colonization into novel environments), but with a dampening effect in range shift scenarios (favoring spatial translocation of adapted genotypes). However, tolerance and plasticity clines were transient and slowly flattened out after range dynamics because of genetic assimilation. In general, our approach allowed us to investigate the evolution of environmental tolerance and phenotypic plasticity under transient evolutionary dynamics in non-equilibrium situations, which contributes to a better understanding of observed patterns and of how species may respond to future environmental changes.Impact SummaryIn a variable and changing environment, the ability of a species to cope with a range of selection pressures and a multitude of environmental conditions is critical, both for its’ spatial distribution and its’ long-term persistence. Striking examples of spatial differences in environmental tolerance have been found within species, when single populations differed from each other in their environmental optimum and tolerance breadth, a characteristic that might strongly modify a species’ response to future environmental change. However, we still know little about the evolutionary processes causing these tolerance differences between populations, especially when the differences result from transient evolutionary dynamics in non-equilibrium situations. We demonstrate with individual-based simulations, how spatial differences in environmental tolerance and phenotypic plasticity evolved across a species’ range during three scenarios of range shifts and range expansion. Range dynamics were either driven by environmental change or by the expansion of the ecological niche. The outcome strongly differed between scenarios as tolerance and plasticity were maximized either at the leading edge, at the trailing edge, or in the middle of the species’ range. Spatial tolerance variation resulted from colonization chronologies and histories of environmental change that varied along the range. Subsequent to the range dynamics, the tolerance and plasticity clines slowly leveled out again as result of genetic assimilation such that the described responses are long-lasting, but in the end temporary. These findings help us better understand species’ evolutionary responses during range shifts and range expansion, especially when facing environmental change.