Anais Do Workshop De Computação Urbana (CoUrb 2020) 2020
DOI: 10.5753/courb.2020.12355
|View full text |Cite
|
Sign up to set email alerts
|

Predição de Séries Temporais de Demanda em Modelos de Compartilhamento de Veículos para Modelos Uni e Multi Variáveis

Abstract: O compartilhamento de veículos é alternativa para a mobilidade urbana que vem sendo largamente adotada. Porém, essa abordagem está sujeita a problemas, como desbalanceamento da frota ao longo do dia, por conta de demandas variadas em grandes centros urbanos. Neste trabalho aplicamos duas técnicas de séries temporais, o LSTM e o Prophet, para inferir a demanda de três serviços reais de compartilhamento de veículos. Além dos dados históricos, atributos climáticos também foram considerados numa das aplicações do … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 8 publications
0
1
0
Order By: Relevance
“…More in deep, we first explore two forecasting models, the Long Short-Term Memory (LSTM) [10] and Prophet [11,12], to predict the demand of three real carsharing services located in Vancouver city, Canada. Then, differently from our previous work [13], we further evaluate seven state-of-the-art forecasting models on a given free-floating carsharing service, highlighting their pros and cons. Moreover, we have also used here climatic series in addition to historical carsharing service data to enhance the forecasting, especially when the dataset presents missing data.…”
Section: Introductionmentioning
confidence: 99%
“…More in deep, we first explore two forecasting models, the Long Short-Term Memory (LSTM) [10] and Prophet [11,12], to predict the demand of three real carsharing services located in Vancouver city, Canada. Then, differently from our previous work [13], we further evaluate seven state-of-the-art forecasting models on a given free-floating carsharing service, highlighting their pros and cons. Moreover, we have also used here climatic series in addition to historical carsharing service data to enhance the forecasting, especially when the dataset presents missing data.…”
Section: Introductionmentioning
confidence: 99%