2015
DOI: 10.1002/qj.2694
|View full text |Cite
|
Sign up to set email alerts
|

Predictability of the thermally driven laboratory rotating annulus

Abstract: We investigate the predictability of the thermally driven rotating annulus, a laboratory experiment used to study the dynamics of planetary atmospheres under controlled and reproducible conditions. Our approach is to apply the same principles used to predict the atmosphere in operational weather forecasting. We build a forecasting system for the annulus using the analysis correction method for data assimilation, the breeding method for ensemble generation, and the Met Office/Oxford Rotating Annulus Laboratory … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 54 publications
0
1
0
Order By: Relevance
“…Ever since, measurements investigating rotating, density-driven shallow-layer flows have provided remarkably useful insights to the basic underlying phenomena of atmospheric and ocean circulation, such as cyclogenesis via baroclinic instability [113], time-reversal asymmetry of temperature fluctuations in weather station records [114], excitation of internal gravity waves [115] just to name a few examples. Furthermore, laboratory models of the mid-latitude atmospheric circulation have been applied to test and validate numerical hydrodynamic solvers [116] and meteorological (ensemble) forecast techniques [117].…”
Section: Ensembles In Experimentsmentioning
confidence: 99%
“…Ever since, measurements investigating rotating, density-driven shallow-layer flows have provided remarkably useful insights to the basic underlying phenomena of atmospheric and ocean circulation, such as cyclogenesis via baroclinic instability [113], time-reversal asymmetry of temperature fluctuations in weather station records [114], excitation of internal gravity waves [115] just to name a few examples. Furthermore, laboratory models of the mid-latitude atmospheric circulation have been applied to test and validate numerical hydrodynamic solvers [116] and meteorological (ensemble) forecast techniques [117].…”
Section: Ensembles In Experimentsmentioning
confidence: 99%