A compressor blade integrated with circumferential groove casing treatment (CGCT) is optimized in this study. A hybrid aerodynamic optimization algorithm that combines the differential evolution (DE) with a radial basis function (RBF) response surface is used for the multi-objective optimization via the computational fluid dynamics (CFD) analysis. The sweep and lean distributions are optimized to pursue the maximum total pressure ratio and adiabatic efficiency at the design point. Constraints on the choking mass flow rate and the near-stall compression ratio are imposed to ensure the off-design performance. The performance is improved much more with the blade-CGCT integrated optimization than with the blade-only optimization. The stall margin of the blade-only optimized blade with CGCT added as an afterthought can be even worse than the baseline blade. The CGCT-removal test for the blade-CGCT integrated optimization result further verifies that the superior performance of the blade-CGCT integrated optimization is obtained via optimizing the coupling between the effects of the sweep and lean on the blade loading and the effects of the CGCT on the flow blockage.