Airborne sensing images harness the combined advantages of hyperspectral and high spatial resolution, offering precise monitoring methods for local-scale water quality parameters in small water bodies. This study employs airborne hyperspectral remote sensing image data to explore remote sensing estimation methods for total nitrogen (TN) and total phosphorus (TP) concentrations in Lake Dianshan, Yuandang, as well as its main inflow and outflow rivers. Our findings reveal the following: (1) Spectral bands between 700 and 750 nm show the highest correlation with TN and TP concentrations during the summer and autumn seasons. Spectral reflectance bands exhibit greater sensitivity to TN and TP concentrations compared to the winter and spring seasons. (2) Seasonal models developed using the Catboost method demonstrate significantly higher accuracy than other machine learning (ML) models. On the test set, the root mean square errors (RMSEs) are 0.6 mg/L for TN and 0.05 mg/L for TP concentrations, with average absolute percentage errors (MAPEs) of 23.77% and 25.14%, respectively. (3) Spatial distribution maps of the retrieved TN and TP concentrations indicate their dependence on exogenous inputs and close association with algal blooms. Higher TN and TP concentrations are observed near the inlet (Jishui Port), with reductions near the outlet (Lanlu Port), particularly for the TP concentration. Areas with intense algal blooms near shorelines generally exhibit higher TN and TP concentrations. This study offers valuable insights for processing small water bodies using airborne hyperspectral remote sensing images and provides reliable remote sensing techniques for lake water quality monitoring and management.