2023
DOI: 10.31940/ijaste.v7i1.1-15
|View full text |Cite
|
Sign up to set email alerts
|

Predicting and determining antecedent factors of tourist village development using naive bayes and tree algorithm

Abstract: This study aims to predict the progress status of tourism villages in the Kedung Ombo area, Java, Indonesia, and find the antecedent factors of the progress of tourism villages in Indonesia. This study uses a modern approach, namely data mining. Data sources for tourist villages use the data available on the Google link and the observation method. The prediction technique uses the Naïve Bayes machine learning algorithm and Tree Decision on Orange 3.3.0 software. The number of tourist villages analyzed was 126.… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 42 publications
0
0
0
Order By: Relevance