2019 IEEE Frontiers in Education Conference (FIE) 2019
DOI: 10.1109/fie43999.2019.9028545
|View full text |Cite
|
Sign up to set email alerts
|

Predicting and Reducing Dropout in Virtual Learning using Machine Learning Techniques: A Systematic Review

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
10
0
3

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 21 publications
(15 citation statements)
references
References 16 publications
0
10
0
3
Order By: Relevance
“…Third, the mechanisms underlying the models or algorithms should be set. Data mining and machine learning have been widely used in recent years to build such prediction models (Agrusti et al, 2019;Manrique et al, 2019;Tamada et al, 2019). While data mining generally refers to merely the identification of hidden patterns in large datasets, machine learning-based algorithms are unique in the sense that they can improve automatically via experience.…”
Section: Predicting Students At-riskmentioning
confidence: 99%
See 1 more Smart Citation
“…Third, the mechanisms underlying the models or algorithms should be set. Data mining and machine learning have been widely used in recent years to build such prediction models (Agrusti et al, 2019;Manrique et al, 2019;Tamada et al, 2019). While data mining generally refers to merely the identification of hidden patterns in large datasets, machine learning-based algorithms are unique in the sense that they can improve automatically via experience.…”
Section: Predicting Students At-riskmentioning
confidence: 99%
“…While data mining generally refers to merely the identification of hidden patterns in large datasets, machine learning-based algorithms are unique in the sense that they can improve automatically via experience. The latter achieve very high levels of accuracy while predicting dropout; a recent literature review had identified 19 machine learning-based models, all of which achieved an accuracy of 91% or higher (Tamada et al, 2019).…”
Section: Predicting Students At-riskmentioning
confidence: 99%
“…Quanto aos fatores que afetam o desempenho e a aprendizagem, o estudo relata que existem diversos fatores, tais como: percepção dos alunos em relação aos conteúdos abordados, história pessoal do aluno, auto eficácia ou metacognição, frequênciaàs aulas, idade dos alunos, status socioeconômico, dentre outros. Tamada, Netto and Lima (2019) realizaram uma revisão sistemática dos trabalhos que utilizam aprendizado de máquina para reduzir altas taxas de evasão em ambientes virtuais de aprendizagem. A revisão relata as técnicas de aprendizado de máquina utilizadas e identifica soluções propostas para reduzir a evasão no ensinoà distância.…”
Section: Trabalhos Relacionadosunclassified
“…Portanto, pode-se assumir que até o momento não há um reconhecimento sistemático sobre elementos indicadores de evasão que se fazem presentes nos AVAs. O estudo de Tamada, Netto and Lima (2019) concentrou-se em tec-1 Uma abordagem indutiva que cria modelos para descobrir automaticamente informações ocultas presentes nos dados dos alunos que podem ser utilizadas na melhoria da aprendizagem (ROMERO; VENTURA; GARCÍA, 2008).…”
Section: Trabalhos Relacionadosunclassified
“…Machine learning has the advantage of constructing models using both categorical and numerical predictions by evaluating linear and nonlinear relationships between variables [25]. Recently, most researchers have used machine learning techniques, as it is highly efficient in prediction models in distance learning [26]. In Jebaseeli and Kirubakaran [27], the authors proposed a neural network-based algorithm is designed to improve the feed-forward network algorithm (IOPNW FFNN) by adding weights from the input layer to the output layer for the M-learning classification.…”
Section: Introductionmentioning
confidence: 99%