Predicting Assembly Geometric Errors Based on Transformer Neural Networks
Wu Wang,
Hua Li,
Pei Liu
et al.
Abstract:Using optimal assembly relationships, companies can enhance product quality without significantly increasing production costs. However, predicting Assembly Geometric Errors presents a challenging real-world problem in the manufacturing domain. To address this challenge, this paper introduces a highly efficient Transformer-based neural network model known as Predicting Assembly Geometric Errors based on Transformer (PAGEformer). This model accurately captures long-range assembly relationships and predicts final… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.