Background
There have been studies on the application of computer-aided diagnosis (CAD) in the endoscopic diagnosis of early esophageal cancer (EEC), but there is still a significant gap from clinical application. We developed an endoscopic CAD system for EEC based on the AutoGluon framework, aiming to explore the feasibility of automatic deep learning (DL) in clinical application.
Methods
The endoscopic pictures of normal esophagus, esophagitis, and EEC were collected from The First Affiliated Hospital of Soochow University (September 2015 to December 2021) and the Norwegian HyperKvasir database. All images of non-cancerous esophageal lesions and EEC in this study were pathologically examined. There were three tasks: task A was normal
vs.
lesion classification under non-magnifying endoscopy (n=932
vs.
1,092); task B was non-cancer lesion
vs.
EEC classification under non-magnifying endoscopy (n=594
vs.
429); and task C was non-cancer lesion
vs.
EEC classification under magnifying endoscopy (n=505
vs.
824). In all classification tasks, we took 100 pictures as the verification set, and the rest comprised as the training set. The CAD system was established based on the AutoGluon framework. Diagnostic performance of the model was compared with that of endoscopists grouped according to years of experience (senior >15 years; junior <5 years). Model evaluation indicators included accuracy, recall rate, precision, F1 value, interpretation time, and the area under the receiver operating characteristic (ROC) curve (AUC).
Results
In tasks A and B, the accuracies of medium-performance CAD and high-performance CAD were lower than those of junior doctors and senior doctors. In task C, the medium-performance and high-performance CAD accuracies were close to those of junior doctors and senior doctors. The high-performance CAD model outperformed the junior doctors in both task A (0.850
vs.
0.830) and task C (0.840
vs.
0.830) in sensitivity comparison, but there was still a large gap between high-performance CAD models and doctors in sensitivity comparison. In task A, with the aid of CAD pre-interpretation, the accuracy of junior and senior physicians were significantly improved (from 0.880 to 0.915 and from 0.920 to 0.945, respectively); the time spent on film reading was significantly shortened (junior: from 11.3 to 8.7 s; senior: from 6.7 to 5.5 s). In task C, with the aid of CAD pre-interpretation, the accuracy of junior and senior physicians were significantly improved (from 0.850 to 0.865 and from 0.915 to 0.935, respectively); the reading time was significantly shortened (junior: from 9.5 to 7.7 s; senior: from 5.6 to 3.0 s).
Conclusions
The CAD system based on the AutoGluon framework can assist doctors to im...