Central composite design (CCD; 5 levels and 4 factors), response surface methodology (RSM), and artificial neural network-genetic algorithm (ANN-GA) were used to evaluate the response of broiler chicks [ADG and feed conversion ratio (FCR)] to dietary standardized ileal digestible protein (dP), lysine (dLys), total sulfur amino acids (dTSAA), and threonine (dThr). A total of 84 battery brooder units of 5 birds each were assigned to 28 diets of CCD containing 5 levels of dP (18-22%), dLys (1.06-1.30%), dTSAA (0.81-1.01%), and dThr (0.66-0.86%) from 11 to 17 d of age. The experimental results of CCD were fitted with the quadratic and artificial neural network models. A ridge analysis (for RSM models) and a genetic algorithm (for ANN-GA models) were used to compute the optimal response for ADG and FCR. For both ADG and FCR, the goodness of fit in terms of R(2) and MS error corresponding to ANN-GA and RSM models showed a substantially higher accuracy of prediction for ANN models (ADG model: R(2) = 0.99; FCR model: R(2) = 0.97) compared with RSM models (ADG model: R(2) = 0.70; FCR model: R(2) = 0.71). The ridge maximum analysis on ADG and minimum analysis on FCR models revealed that the maximum ADG may be obtained with 18.5, 1.10, 0.89, and 0.73% dP, dLys, dTSAA, and dThr, respectively, in diet, and minimum FCR may be obtained with 19.44, 1.18, 0.90, and 0.75% of dP, dLys, dTSAA, and dThr, respectively, in diet. The optimization results of ANN-GA models showed the maximum ADG may be achieved with 19.93, 1.06, 0.90, and 0.76% of dP, dLys, dTSAA, and dThr, respectively, in diet, and minimum FCR may be achieved with 18.63, 1.26, 0.84, and 0.69% of dP, dLys, dTSAA, and dThr, respectively, in diet. The results of this study revealed that the platform of CCD (for conducting growth trials with minimum treatments), RSM model, and ANN-GA (for experimental data modeling and optimization) may be used to describe the relationship between dietary nutrient concentrations and broiler performance to achieve the optimal target.