Predicting carbon and oil price returns using hybrid models based on machine and deep learning
Jesús Molina‐Muñoz,
Andrés Mora‐Valencia,
Javier Perote
Abstract:SummaryPredicting carbon and oil prices is recently gaining relevance in the climate change literature. This is due to the fact that conventional energy market analysis and the design of mechanisms for climate change mitigation constitute key variables for artificial carbon markets. Yet, modelling non‐linear effects in time series remains a major challenge for carbon and oil price forecasting. Hence, hybrid models seem to be appealing alternatives for this purpose. This study evaluates the performance of 12 hy… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.