2024
DOI: 10.3311/ppme.23391
|View full text |Cite
|
Sign up to set email alerts
|

Predicting Concentration Fluctuations of Locally Emitted Air Pollutants in Urban-like Geometry Using Deep Learning

Bálint Papp,
Gergely Kristóf

Abstract: The accurate quantification of concentration fluctuations is crucial when evaluating the exposure to toxic, infectious, reactive, flammable, or explosive substances, as well as for the estimation of odor nuisance. However, in the field of Computational Fluid Dynamics (CFD), the industry currently relies predominantly on steady-state RANS turbulence models for simulating near-field pollutant dispersion, which are only capable of producing the time-averaged concentration field. This paper presents a regression r… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 19 publications
0
0
0
Order By: Relevance