Background. Ovarian cancer (OC) is the top of the aggressive malignancies in females with a poor survival rate. However, the roles of immune-related pseudogenes (irPseus) in the immune infiltration of OC and the impact on overall survival (OS) have not been adequately studied. Therefore, this study aims to identify a novel model constructed by irPseus to predict OS in OC and to determine its significance in immunotherapy and chemotherapy. Methods. In this study, with the use of The Cancer Genome Atlas (TCGA) combined with Genotype-Tissue Expression (GTEx), 55 differentially expressed irPseus (DEirPseus) were identified. Then, we constructed 10 irPseus pairs with the help of univariate, Lasso, and multivariate Cox regression analysis. The prognostic performance of the model was determined and measured by the Kaplan–Meier curve, a time-dependent receiver operating characteristic (ROC) curve. Results. After dividing OC subjects into high- and low-risk subgroups via the cut-off point, it was revealed that subjects in the high-risk group had a shorter OS. The multivariate Cox regression performed between the model and multiple clinicopathological variables revealed that the model could effectively and independently predict the prognosis of OC. The prognostic model characterized infiltration by various kinds of immune cells and demonstrated the immunotherapy response of subjects with cytotoxic lymphocyte antigen 4 (CTLA4), anti-programmed death-1 (PD-1), and anti-PD-ligand 1 (PD-L1) therapy. A high risk score was related to a higher inhibitory concentration (IC50) for etoposide (
P
=
0.0099
) and mitomycin C (
P
=
0.0013
). Conclusion. It was the first study to identify a novel signature developed by DEirPseus pairs and verify the role in predicting OS, immune infiltrates, immunotherapy, and chemosensitivity. The irPseus are vital factors predicting the prognosis of OC and could act as a novel potential treatment target.