For decades, N 2 activation and functionalization have required the use of transition metal complexes. Thus, it is one of the most challenging projects to activate the abundant dinitrogen through metal-free systems under mild conditions. Here, we demonstrate a proof-of-concept study on the catalytic hydrogenation of dinitrogen (with activation energy as low as 15.3 kcal mol À 1 ) initiated by a dual Lewis acid (DLA) via density functional theory (DFT) calculations. In addition, such a DLA could be also used to activate a series of small molecules including carbon dioxide, formaldehyde, Nethylenemethylamine, and acetonitrile. It is found that aromaticity plays an important role in stabilizing intermediates and products. Our findings provide an alternative approach to N 2 activation and functionalization, highlighting a great potential of DLA for small molecule activation.