2012
DOI: 10.1016/j.actamat.2012.04.019
|View full text |Cite
|
Sign up to set email alerts
|

Predicting equilibrium shape of precipitates as function of coherency state

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

4
74
0
2

Year Published

2012
2012
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 163 publications
(80 citation statements)
references
References 35 publications
4
74
0
2
Order By: Relevance
“…Formation of line defects, such as misfit dislocations and structure ledges, within the interface relieves misfit stress at the expense of increasing interfacial energy. 2 By introducing the structure ledges, the interfacial coherency can be significantly increased. 6,7 The coherent interface can be investigated by methods based on density functional theory (DFT), however, without considering the lattice mismatch or lattice relaxation.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Formation of line defects, such as misfit dislocations and structure ledges, within the interface relieves misfit stress at the expense of increasing interfacial energy. 2 By introducing the structure ledges, the interfacial coherency can be significantly increased. 6,7 The coherent interface can be investigated by methods based on density functional theory (DFT), however, without considering the lattice mismatch or lattice relaxation.…”
Section: Introductionmentioning
confidence: 99%
“…It has been shown that the interfacial energy is a key parameter determining the nucleation barrier and also the shapes of precipitates. [1][2][3] However, the interfacial energy is often not experimentally accessible. Due to the lack of measured data, ab initio calculations have been extensively applied to determine the metal-ceramic interfacial energy.…”
Section: Introductionmentioning
confidence: 99%
“…Во всем интервале температур развития β / α превращения коэффициент анизотропии удельной меж-фазной поверхностной энергии (K = E max / E min ) близок к 2. Полученные значения энергии удовлетворительно согла-суются с данными, приводимыми в литературе [9], где энергия межфазных границ оценивалась как доля энер-гии высокоугловых границ зерен.…”
Section: A) все эти плоскости содержат направле-ние [0001] α || [110]unclassified
“…Поскольку прямых экспериментальных мето-дов измерения энергии межфазных границ нет, за ве-личину энергии межфазных границ часто принимают долю энергии высокоугловых границ зерен (High angle boundaries -Е HAB ) одной из фаз. Считают, что энер-гия некогерентных межфазных границ составляет (0.7 -1) Е HAB , а полукогерентных -(0.4 -0.5) Е HAB [1,2,9]. В то же время известно, что энергия межфазных границ определяется их строением, и строение разных граней сопрягающихся фаз существенно различается, особен-но в тех случаях, когда между фазами существует опре-деленное кристаллографическое ориентационное соот-ветствие [1 -4].…”
Section: Introductionunclassified
“…[1][2][3] Computer simulations of microstructures generated from solid-state phase transformations have also achieved a certain degree of success. [4][5][6][7][8] The orientations of the predicted faceted interfaces are a key parameter that can be used to check whether a simulated morphology actually resembles what is observed in a real material. Simulation results are generally in excellent agreement with experimental results if the two phases are related by a rational OR and have a rational HP.…”
Section: Introductionmentioning
confidence: 99%