2024
DOI: 10.1007/jhep11(2024)038
|View full text |Cite
|
Sign up to set email alerts
|

Predicting Feynman periods in ϕ4-theory

Paul-Hermann Balduf,
Kimia Shaban

Abstract: We present efficient data-driven approaches to predict the value of subdivergence-free Feynman integrals (Feynman periods) in ϕ4-theory from properties of the underlying Feynman graphs, based on a statistical examination of almost 2 million graphs. We find that the numbers of cuts and cycles determines the period to better than 2% relative accuracy. Hepp bound and Martin invariant allow for even more accurate predictions. In most cases, the period is a multi-linear function of the properties in question. Furth… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 44 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?