In humans, spontaneous movements are often preceded by early brain signals. One such signal is the readiness potential (RP) that gradually arises within the last second preceding a movement. An important question is whether people are able to cancel movements after the elicitation of such RPs, and if so until which point in time. Here, subjects played a game where they tried to press a button to earn points in a challenge with a brain-computer interface (BCI) that had been trained to detect their RPs in real time and to emit stop signals. Our data suggest that subjects can still veto a movement even after the onset of the RP. Cancellation of movements was possible if stop signals occurred earlier than 200 ms before movement onset, thus constituting a point of no return.free choice | readiness potential | brain-computer interface | point of no return | veto I t has been repeatedly shown that spontaneous movements are preceded by early brain signals (1-8). As early as a second before a simple voluntary movement, a so-called readiness potential (RP) is observed over motor-related brain regions (1-3, 5). The RP was found to precede the self-reported time of the "'decision' to act" (ref. 3, p. 623). Similar preparatory signals have been observed using invasive electrophysiology (8, 9) and functional MRI (7, 10), and have been demonstrated also for choices between multiple-response options (6,7,10), for abstract decisions (10), for perceptual choices (11), and for value-based decisions (12). To date, the exact nature and causal role of such early signals in decision making is debated (12)(13)(14)(15)(16)(17)(18)(19)(20).One important question is whether a person can still exert a veto by inhibiting the movement after onset of the RP (13,18,21,22). One possibility is that the onset of the RP triggers a causal chain of events that unfolds in time and cannot be cancelled. The onset of the RP in this case would be akin to tipping the first stone in a row of dominoes. If there is no chance of intervening, the dominoes will gradually fall one-by-one until the last one is reached. This has been coined a ballistic stage of processing (23,24). A different possibility is that participants can still terminate the process, akin to taking out a domino at some later stage in the chain and thus preventing the process from completing. Here, we directly tested this in a real-time experiment that required subjects to terminate their decision to move once a RP had been detected by a brain-computer interface (BCI) (25-31).
ResultsSubjects were confronted with a floor-mounted button and a light presented on a computer screen. Once the light turned green ("go signal"), subjects waited for a short, self-paced period of about 2 s after which they were allowed to press the button with their right foot at any time. They could earn points if they pressed while the light was green, but lose points if they pressed after the light had turned red ("stop signal"). The experiment had three consecutive stages (Fig. 1A). In stage I, stop signals were e...