Predicting Future Demand Analysis in the Logistics Sector Using Machine Learning Methods
Erhan HAYTA,
Bunyamin GENCTURK,
Cuneyt ERGEN
et al.
Abstract:In this study, the potential of machine learning methods for analyzing future needs in the logistics sector was investigated. The research is conducted using the MATLAB platform. Numeric pallet demand data obtained from a logistics company are employed to train MLP, LSTM, and CNN models. Data security and confidentiality take priority during the data collection process. This dataset, comprising a total of 3,062 daily records, serves as the primary data source for the study. In the data preprocessing phase, mis… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.