Autosomal dominant polycystic kidney disease (ADPKD) is a disease characterized by a progressive kidney growth due to the development of cysts that lead to gradual destruction of the surrounding parenchyma. In the first stage, the estimated GFR will remain stable despite the reduction of the renal parenchyma because of an increase in glomerular hyperfiltration. The total kidney volume (TKV) measured with computed tomography or magnetic resonance imaging is related to the future GFR decline. Thus, TKV has become an early marker to be analyzed in all patients with ADPKD. In addition, in recent years, it has been pointed out that kidney growth rate estimated with a single TKV measurement can be a clear prognostic marker for future glomerular filtration decline. However, there is no consensus on how to measure kidney volume growth in ADPKD, so each author has used different models that, not having the same meaning, have been handled as if they produced similar values. This may lead to erroneous estimates of kidney growth rate with the consequent prognostic error. The Mayo Clinic classification is now the most widely accepted prognostic model in clinical practice to predict patients who will deteriorate faster and to decide what patients should be treated with tolvaptan. However, some aspects of this model have not been discussed in depth. Our aim in this review was to present the models that can be used to estimate kidney volume growth rate in ADPKD, to facilitate their applicability in daily clinical practice.