Digital aerial photogrammetry (DAP) data acquired by unmanned aerial vehicles (UAV) have been increasingly used for forest inventory and monitoring. In this study, we evaluated the potential of UAV photogrammetry data to detect individual trees, estimate their heights (ht), and monitor the initial silvicultural quality of 1.5-year-old Eucalyptus sp. stand in northeastern Brazil. DAP estimates were compared with accurate tree locations obtained with real time kinematic (RTK) positioning and direct height measurements obtained in the field. In addition, we assessed the quality of a DAP-UAV digital terrain model (DTM) derived using an alternative ground classification approach and investigated its performance in the retrieval of individual tree attributes. The DTM built for the stand presented an RMSE of 0.099 m relative to the RTK measurements, showing no bias. The normalized 3D point cloud enabled the identification of over 95% of the stand trees and the estimation of their heights with an RMSE of 0.36 m (11%). However, ht was systematically underestimated, with a bias of 0.22 m (6.7%). A linear regression model, was fitted to estimate tree height from a maximum height metric derived from the point cloud reduced the RMSE by 20%. An assessment of uniformity indices calculated from both field and DAP heights showed no statistical difference. The results suggest that products derived from DAP-UAV may be used to generate accurate DTMs in young Eucalyptus sp. stands, detect individual trees, estimate ht, and determine stand uniformity with the same level of accuracy obtained in traditional forest inventories.