2022
DOI: 10.1016/j.rse.2021.112767
|View full text |Cite
|
Sign up to set email alerts
|

Predicting leaf traits of temperate broadleaf deciduous trees from hyperspectral reflectance: can a general model be applied across a growing season?

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
13
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 27 publications
(15 citation statements)
references
References 89 publications
0
13
0
2
Order By: Relevance
“…The timing at which chlorophyll, woody water content, and tree crown structure vary (in response to crop development or weather events) may not perfectly match, causing differences in the synchronicity of GCC, NDVI and CR time series [31]. Unlike the chlorophyll content which increased rapidly with the growth of young leaves [58], the woody water content decreased slowly after leaf-out [51], thus explaining why CR time series change slower than GCC and NDVI time series. Our study can deepen the understanding of the response of SAR data to deciduous forests growth at the present stage, but also provide a new avenue for future research on the phenology based on SAR data.…”
Section: B Comparisons Between Sos Derived From Gcc Cr and Ndvimentioning
confidence: 99%
“…The timing at which chlorophyll, woody water content, and tree crown structure vary (in response to crop development or weather events) may not perfectly match, causing differences in the synchronicity of GCC, NDVI and CR time series [31]. Unlike the chlorophyll content which increased rapidly with the growth of young leaves [58], the woody water content decreased slowly after leaf-out [51], thus explaining why CR time series change slower than GCC and NDVI time series. Our study can deepen the understanding of the response of SAR data to deciduous forests growth at the present stage, but also provide a new avenue for future research on the phenology based on SAR data.…”
Section: B Comparisons Between Sos Derived From Gcc Cr and Ndvimentioning
confidence: 99%
“…The 'Blue' band covers the wavelengths from 450 − 510 nm; the 'Green' band 530 − 590 nm; the 'Red' band 640 − 670 nm; the 'Near Infrared' (NIR) band 850 − 880nm; the 'Shortwave Infrared 1' (SWIR1) band 1570 − 1650 nm; the 'Shortwave Infrared 2' (SWIR2) band 2110 − 2290 nm. These spectral band values were chosen because they were shown to capture the δ 15 N at leaf and canopy scales [Wang et al, 2007;Serbin et al, 2014;Hellmann et al, 2015;Chen et al, 2022]. We also obtained the quality assessment channel (QA) and removed data with cloud or cloud shadow.…”
Section: Landsat Spectramentioning
confidence: 99%
“…Recent developments in spectrometry allow the estimation of δ 15 N from the spectral re ectance of plant materials [Wang et al, 2007;Serbin et al, 2014;Hellmann et al, 2015;Chen et al, 2022]. Reassuringly, remotely-sensed foliage spectral re ectance has been successfully used as indicators of plant physiological traits [Ma et al, 2019;Fernández-Habas et al, 2021;Williams et al, 2021;Wan et al, 2022].…”
mentioning
confidence: 99%
“…1)通常只关注生长季中期的植物功能性状, 忽略了 它们本身也随个体发育、叶龄和季节气候动态而变 化这一事实, 而这些动态变化对解析生态系统过程 非常重要 (Wu et al, 2016(Wu et al, , 2017Yang et al, 2016;Chavana-Bryant et al, 2017;Chen et al, 2022); 2)大 Wu et al, 2017;Serbin et al, 2019;Yan et al, 2021) 生产力监测提供了新途径 (Zhang et al, 2021), 也为 与光合作用相关的功能性状(如叶片最大羧化速率、 叶绿素含量和氮含量)监测提供了新方法 (Camino et al, 2019;He et al, 2019a;Berger et al, 2020) et al, 1988, 1989)。AIS是机载可见光/近红外成像光 谱仪(AVIRS)的前身。此后, 陆续出现了许多其他类 型的机载成像光谱仪系统, 包括HyMap (Cocks et al, 1998), et al, 2012), AVIRIS-Next Generation (Thompson et al, 2018) www.plant-ecology.com 功能多样性图 (Zhao et al, 2018;Zheng et al, 2021) 度上的适用性 (Yang et al, 2016;Wu et al, 2017Wu et al, , 2019Chen et al, 2022),…”
Section: 植物功能性状是指植物对环境适应和进化所表unclassified
“…©植物生态学报 Chinese Journal of Plant Ecology 严正兵等: 高光谱遥感技术在植物功能性状监测中的应用与展望 1155 DOI: 10.17521/cjpe.2022.0223PROSPECT-5 (Féret et al, 2008) 和 花 青 素 的 PROSPECT-D(Féret et al, 2017), 再到增加了氮含 量的PROSPECT-PRO(Féret et al, 2021)。在冠层辐代数值优化方法旨在通过不断改变输入变量直到模 型模拟的冠层光谱与实际观测的冠层光谱之间的差 异(即成本函数)达到最小(Bayat et al, 2016)。 基于查 找表的方法是利用辐射传输模型, 根据合理的输入 参数组合, 先大量模拟冠层光谱, 然后从模拟的光 谱 库 中 寻 找 与 观 测 光 谱 最 相 似 的 结 果 (Lochereret al, 2015)。使用辐射传输模型反演方法优点在于 节的叶片生物化学和形态结构性状(Yang et al, 2016;Chen et al, 2022); 刻画了南美热带雨林的叶 片年龄、生化特性和光合作用潜力, 并反演了光合 作 用 潜力 随叶 片 年龄 的动 态 变化 规律 (Chavana-Bryant et al, 2017; Wu et al, 2017, 2019)。与此同时, 陆续有研究将高光谱遥感技术运用到农作物表型监 测中, 发现该技术可以准确预测作物因基因型、生 长阶段、水分胁迫、养分胁迫等因素引起的性状变 化, 这为作物高通量表型分析和育种提供了重要的 技术支撑(Yendrek et al, 2017; Silva-Perez et al, 2018; Ely et al, 2019; Meacham-Hensold et al, 2019; Burnett et al, 2021b)。 www.plant-ecology.com 表1 高光谱遥感技术在叶片尺度植物功能性状监测中的应用案例 Asneret al, 2014;Ely et al, 2019; Féret et al, 2019; Burnett et al, 2021b;Yan et al, 2021; 2021; Chen et al, 2022 钾含量 Potassium content 0.54-0.61 PLSR, SVM Asner et al, 2014; Féret et al, 2019; Chen et al, 2022 PLSR Chavana-Bryant et al, 2017; Wu et al, 2017 ANN, 人工神经网络; GPR, 高斯过程回归; PLSR, 偏最小二乘回归; RTM, 辐射传输模型; SVM, 支持向量机; VI, 植被指数。 ANN, artificial neural network; GPR, Gaussian processes regression; PLSR, partial least squares regression; RTM, radiative transfer model; SVM, support vector machine; VI, vegetation index. 严正兵等: 高光谱遥感技术在植物功能性状监测中的应用与展望 1157 DOI: 10.17521/cjpe.2022.0223 表2 高光谱遥感技术在群落尺度植物功能性状监测中的应用案例…”
unclassified