2023
DOI: 10.3390/ijerph20054477
|View full text |Cite
|
Sign up to set email alerts
|

Predicting Low-Level Childhood Lead Exposure in Metro Atlanta Using Ensemble Machine Learning of High-Resolution Raster Cells

Abstract: Low-level lead exposure in children is a major public health issue. Higher-resolution spatial targeting would significantly improve county and state-wide policies and programs for lead exposure prevention that generally intervene across large geographic areas. We use stack-ensemble machine learning, including an elastic net generalized linear model, gradient-boosted machine, and deep neural network, to predict the number of children with venous blood lead levels (BLLs) ≥2 to <5 µg/dL and ≥5 µg/dL in ~1 km2 … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 38 publications
0
0
0
Order By: Relevance