Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Conventionally, efficiency is indirectly estimated through a respiratory gas analyser (oxygen, carbon dioxide), which is a complex and rather costly calculation method that is difficult to perform in many situations. Therefore, the present study proposed a modified definition of efficiency, called the efficiency factor (EF) (i.e., the ratio of work to the corresponding exercise intensity), and evaluated the relation between the EF and maximal oxygen uptake ($${\dot{\text{V}}\text{O}}_{2\max }$$ V ˙ O 2 max ), as well as compared the prediction models established based on the EF. The heart rate (maximal heart rate: 186 ± 6 beats min−1), rating of perceived exertion (19 ± 1), and $${\dot{\text{V}}\text{O}}_{2\max }$$ V ˙ O 2 max (39.0 ± 7.1 mL kg−1 min−1) of 150 healthy men (age: 20 ± 2 years; height: 175.0 ± 6.0 cm; weight: 73.6 ± 10.7 kg; body mass index [BMI]: 24.0 ± 3.0 kg m−2; percent body fat [PBF]: 17.0 ± 5.7%) were measured during the cardiopulmonary exercise test (CPET). Through multiple linear regression analysis, we established the BMI model using age and BMI as parameters. Additionally, we created the PBF modelHRR utilizing weight, PBF, and heart rate reserve (HRR) and developed PBF modelEF6 and PBF modelEF7 by incorporating EF6 from the exercise stage 6 and EF7 from the exercise stage 7 during the CPET, respectively. EF6 (r = 0.32, p = 0.001) and EF7 (r = 0.31, p = 0.002) were significantly related to $${\dot{\text{V}}\text{O}}_{2\max }$$ V ˙ O 2 max . Among the models, the PBF modelEF6 showed the highest accuracy, which could explain 62.6% of the variance in the $${\dot{\text{V}}\text{O}}_{2\max }$$ V ˙ O 2 max at with a standard error of estimate (SEE) of 4.39 mL kg−1 min−1 (%SEE = 11.25%, p < 0.001). These results indicated that the EF is a significant predictor of $${\dot{\text{V}}\text{O}}_{2\max }$$ V ˙ O 2 max , and compared to the other models, the PBF modelEF6 is the best model for estimating $${\dot{\text{V}}\text{O}}_{2\max }$$ V ˙ O 2 max .
Conventionally, efficiency is indirectly estimated through a respiratory gas analyser (oxygen, carbon dioxide), which is a complex and rather costly calculation method that is difficult to perform in many situations. Therefore, the present study proposed a modified definition of efficiency, called the efficiency factor (EF) (i.e., the ratio of work to the corresponding exercise intensity), and evaluated the relation between the EF and maximal oxygen uptake ($${\dot{\text{V}}\text{O}}_{2\max }$$ V ˙ O 2 max ), as well as compared the prediction models established based on the EF. The heart rate (maximal heart rate: 186 ± 6 beats min−1), rating of perceived exertion (19 ± 1), and $${\dot{\text{V}}\text{O}}_{2\max }$$ V ˙ O 2 max (39.0 ± 7.1 mL kg−1 min−1) of 150 healthy men (age: 20 ± 2 years; height: 175.0 ± 6.0 cm; weight: 73.6 ± 10.7 kg; body mass index [BMI]: 24.0 ± 3.0 kg m−2; percent body fat [PBF]: 17.0 ± 5.7%) were measured during the cardiopulmonary exercise test (CPET). Through multiple linear regression analysis, we established the BMI model using age and BMI as parameters. Additionally, we created the PBF modelHRR utilizing weight, PBF, and heart rate reserve (HRR) and developed PBF modelEF6 and PBF modelEF7 by incorporating EF6 from the exercise stage 6 and EF7 from the exercise stage 7 during the CPET, respectively. EF6 (r = 0.32, p = 0.001) and EF7 (r = 0.31, p = 0.002) were significantly related to $${\dot{\text{V}}\text{O}}_{2\max }$$ V ˙ O 2 max . Among the models, the PBF modelEF6 showed the highest accuracy, which could explain 62.6% of the variance in the $${\dot{\text{V}}\text{O}}_{2\max }$$ V ˙ O 2 max at with a standard error of estimate (SEE) of 4.39 mL kg−1 min−1 (%SEE = 11.25%, p < 0.001). These results indicated that the EF is a significant predictor of $${\dot{\text{V}}\text{O}}_{2\max }$$ V ˙ O 2 max , and compared to the other models, the PBF modelEF6 is the best model for estimating $${\dot{\text{V}}\text{O}}_{2\max }$$ V ˙ O 2 max .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.