Quality of canola oil obtained by the supercritical fluid extraction (SFE), using CO 2 with ethanol as a co-solvent, was evaluated and compared to that of the conventionally-obtained oils using either n-hexane or chloroform methanol mixture. Physical characteristics, chemical properties, fatty acid composition and phenolic profile of oils were investigated. The SFE oil showed significantly lower melting point, peroxide value (PV) and higher free fatty acids (FFAs) and iodine value (IV) than the n-hexane-extracted one. There were no significant differences in the fatty acid composition of different oils. The SFE oil showed significantly higher phenolic content (35.91, 10.15, 3.16, 0.32 and 47.48 μg/g of sinapic acid, sinapine, sinapoyl glucose, canolol and total phenolics) as compared to 0.08, 0.70, 0.88, 0.45 and 0.71 μg/g, respectively in the n-hexane-extracted oil. These results indicate the superiority of SFE and advocate its use for the extraction of highly stable and functional canola oil for further health and nutraceutical uses. The present results have an industrial and technological relevance as SFE could be competitive with the traditional extraction techniques providing an environmental approach and enhancing the obtained oil quality and stability. After recovery of the initial installation costs, SFE could be more economic than conventional extraction. However, further economical studies are needed to validate this last conclusion.