2016
DOI: 10.48550/arxiv.1612.00662
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Predicting Patient State-of-Health using Sliding Window and Recurrent Classifiers

Abstract: Bedside monitors in Intensive Care Units (ICUs) frequently sound incorrectly, slowing response times and desensitising nurses to alarms (Chambrin, 2001), causing true alarms to be missed (Hug et al., 2011). We compare sliding window predictors with recurrent predictors to classify patient state-of-health from ICU multivariate time series; we report slightly improved performance for the RNN for three out of four targets.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?