2019
DOI: 10.4018/978-1-5225-8244-1.ch006
|View full text |Cite
|
Sign up to set email alerts
|

Predicting Patient Turnover

Abstract: Predicting patient turnover within health services is beneficial for resource planning. In this chapter, patient turnover is viewed as a form of customer churn. As such, the authors examine whether free-form notes are useful for solving the classification problem typically associated with customer churn. The authors show that classifiers which incorporate free-form notes, using natural language processing techniques, are up to 11% more accurate than classifiers that are solely developed using structured data. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 55 publications
0
0
0
Order By: Relevance