2019
DOI: 10.1016/j.ijmedinf.2019.103986
|View full text |Cite
|
Sign up to set email alerts
|

Predicting post-stroke pneumonia using deep neural network approaches

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
40
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
5
2
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 79 publications
(42 citation statements)
references
References 26 publications
0
40
0
2
Order By: Relevance
“…The first main reason was that the OCSP subtype was based on these neurological deficits. The second one was that the newly developed machine learning methods (such as deep learning) could process medical data better [27,28], even the features collected in 1990's were not very mature. In the study the dataset was firstly analyzed by Shapiro-Wilk algorithm and Pearson Correlation.…”
Section: Discussionmentioning
confidence: 99%
“…The first main reason was that the OCSP subtype was based on these neurological deficits. The second one was that the newly developed machine learning methods (such as deep learning) could process medical data better [27,28], even the features collected in 1990's were not very mature. In the study the dataset was firstly analyzed by Shapiro-Wilk algorithm and Pearson Correlation.…”
Section: Discussionmentioning
confidence: 99%
“…É perceptível na Figura 1 que os trabalhos com foco no diagóstico preventivo de pneumonia utilizaram apenas tarefas de classificação. Conforme comentado pelos autores, a identificação da patologia no início do tratamento é um fator essencial para um bom prognóstico e por isso a tarefa de classificação se destaca entre as demais [DeLisle et al 2013] [Ge et al 2019]. Para trabalhos focados nas categorias de Mortalidade e Complicações e Tempo de Internação e Readmissão, existe uma divisão dos resultados entre Tarefas de Classificação, em que os autores focam apenas na sinalização desses riscos à equipe médica [Wu et al 2014] [Shimizu et al 2019] [Lai et al 2018] e Regressão, para estimar a probabilidade de tais riscos ocorrerem [Caruana et al 2015] [Villiers et al 2018].…”
Section: Quais Tarefas De MD Foram Identificadas?unclassified
“…Considerando que a análise da curva ROC é baseada na Sensitividade e Especificidade, representando a relação bidimensional entre os casos verdadeiros positivos e falso positivos , justifica-se sua utilização pela maioria dos modelos considerando que erros na previsão desses casos causam maior impacto os pacientes, representando doentes, corretamente classificados como doentes [Caruana et al 2015] [Naydenova et al 2015] [Lai et al 2018] [Ge et al 2019]. Acurácia geral e Score Kappa obtiveram a menor representatividade nos trabalhos, resultado justificável visto que ambas as medidas focam na performance genérica dos modelos, enquanto os modelos utilizados na área médica se concentram em errar o menos possível na classe de interesse.…”
Section: Quais As Métricas Mais Utilizadas Para Avaliação Dos Modelos?unclassified
“…Learning from a set of data (training data), machine learning algorithms apply a predictive model to unseen data (test data) [12]. There has been a plethora of applications of machine learning in healthcare, such as predicting diseases, health events and drug response, survival prediction, clustering of patients based on risk classification, analyzing genetics data and medical imaging [13][14][15][16][17]. In addition, a few studies have utilized machine learning for predicting cancer survival from hospital records and registries [18][19][20][21][22][23].…”
Section: Introductionmentioning
confidence: 99%