“…The most frequently used ML approach was SVM (Galatzer‐Levy, Karstoft, Statnikov, & Shalev, ; Galatzer‐Levy et al., ; Jin et al., ; Karstoft, Galatzer‐Levy, Statnikov, Li, & Shalev, ; Karstoft, Statnikov, Andersen, Madsen, & Galatzer‐Levy, ; Liu et al., ; Tylee et al., ; Zhang et al., ), which is a classification algorithm that transforms the data in a multidimensional space to search for a hyperplane that linearly separates the instances that belong to the same class (e.g., PTSD vs. no PTSD). In addition, many studies have used ensemble techniques, such as boosted trees (Galatzer‐Levy, Karstoft et al., ), random forests (Galatzer‐Levy, Karstoft et al., ; Kessler et al., ; Marinić et al., ; Reece & Danforth, ; Rosellini, Dussaillant, Zubizarreta, Kessler, & Rose, ; Saxe, Ma, Ren, & Aliferis, ), multilayer perceptron (Omurca & Ekinci, ), and Bayesian additive regression trees (Rosellini et al., ). The super learner algorithm outperformed other algorithms in two studies and was used for developing a risk score for PTSD (Kessler et al., ; Rosellini et al., ).…”