2020
DOI: 10.1088/1742-6596/1577/1/012011
|View full text |Cite
|
Sign up to set email alerts
|

Predicting Rainfall Intensity using Naïve Bayes and Information Gain Methods (Case Study: Sleman Regency)

Abstract: Climate change, which has an impact on environmental problems in tropical countries, is still a severe problem, and efforts to prevent and manage it are continuously pursued. Indonesia, as a tropical country with topographical conditions and strategic geographical position, causes Indonesia to have different weather and climate patterns. Climatologically there are significant differences between the rainy season and the dry season. Both these seasons can bring blessings but also disasters if not appropriately … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2022
2022
2023
2023

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 6 publications
0
2
0
2
Order By: Relevance
“…In flood prediction in Bangladesh using the K-NN algorithm, the study shows that the K-NN algorithm yields an average accuracy value of 94.91%, an average precision value of 92%, and an average recall value of 91% [7]. In the Sleman regency's rainfall intensity prediction using the NB algorithm, the study shows that the most influential parameter on rainfall intensity is the average temperature with an entropy value of 0.047811028 [8]. Using these references, we studied how machine learning solves flood prediction and classification problems based on the water level.…”
Section: Imentioning
confidence: 98%
“…In flood prediction in Bangladesh using the K-NN algorithm, the study shows that the K-NN algorithm yields an average accuracy value of 94.91%, an average precision value of 92%, and an average recall value of 91% [7]. In the Sleman regency's rainfall intensity prediction using the NB algorithm, the study shows that the most influential parameter on rainfall intensity is the average temperature with an entropy value of 0.047811028 [8]. Using these references, we studied how machine learning solves flood prediction and classification problems based on the water level.…”
Section: Imentioning
confidence: 98%
“…Sebagai negara tropis dengan musim hujan dan kemarau, Indonesia juga merasakan dampak dari perubahan iklim yang terjadi (Sena, Dillak, Leunupun, & Santoso, 2020), maka dari itu sebagai upaya untuk mengantisipasi kerugian terhadap pertumbuhan tanaman di masa mendatang, Stasiun Klimatologi Jawa Timur yang terletak pada Lintang -7.90080, bujur 112.59790 memperoleh data laporan harian iklim yang dapat peneliti ambil dari website BMKG dengan rentang waktu mulai dari Januari 2020 hingga September 2022, format dari data adalah excel, sehingga dapat mudah dilakukan pengolahan untuk keperluan analisis dan prediksi perubahan iklim melalui metode data mining dan algoritma Naïve Bayes.…”
Section: Pendahuluanunclassified
“…Data yang digunakan adalah variabel tekanan (P), evaporasi (E), suhu maksimal (T), kelembaban rata-rata (RH), dan lama penyinaran matahari (LS) sebagai variabel input sedangkan data curah hujan (CH) sebagai variabel target. Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) mengkategorikan intensitas curah hujan berdasarkan 4 kriteria seperti pada Tabel 2 [31]. Dataset penelitian ini ditunjukkan pada Tabel 1.…”
Section: Sumber Dataunclassified