2017
DOI: 10.1007/978-3-319-70407-4_43
|View full text |Cite
|
Sign up to set email alerts
|

Predicting Relations Between RDF Entities by Deep Neural Network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
1
1
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 8 publications
0
1
0
1
Order By: Relevance
“…En nuestro caso, la red neuronal se generó empleando las herramientas de código abierto Keras [18] y Google TensorFlow [19], que facilitan la construcción y entrenamiento de los modelos. Estas herramientas crean capas de abstracción e interfaces de diseño y evaluación rápida de las arquitecturas Deep Learning [20].…”
Section: Desarrollo De La Arquitectura De La Red Neuronalunclassified
“…En nuestro caso, la red neuronal se generó empleando las herramientas de código abierto Keras [18] y Google TensorFlow [19], que facilitan la construcción y entrenamiento de los modelos. Estas herramientas crean capas de abstracción e interfaces de diseño y evaluación rápida de las arquitecturas Deep Learning [20].…”
Section: Desarrollo De La Arquitectura De La Red Neuronalunclassified
“…Specifically, SemDeep has seen contributions on the explicit modeling of lexical and semantic relations stemming from joint neural-symbolic methods [23,44,55]. Additionally, well-defined NLP tasks have also been the focus of several SemDeep papers over the years, covering event detection [11], part-of-speech tagging [67], co-reference resolution [63], sentiment analysis [47], named entity recognition [41] or question answering [32].…”
Section: Recent Semantic Deep Learning Approachesmentioning
confidence: 99%