This paper incorporates a probabilistic fire loss assessment method for reinforced concrete structures into a cost-benefit analysis to optimize a structural fire design. Economic losses in case of failure and survival of the structure are both quantified with, in the latter case, an estimate of the damage and repairs costs. As a case study, a cost-benefit optimization of the position of rebars in a concrete column is investigated. The column response in fire is evaluated using finite element simulations in SAFIR. Variations in cover thickness result in variations in failure probabilities and, for cases where no failure occurs, variations in repair costs due to heat penetration and residual out-of-plane deformation of the column. The optimum cover thickness is the one that offers the best trade-off between the various repair costs across the range of likely fire intensity levels. This optimum is sensitive to repair decisions such as the tolerance on the acceptable residual out-of-plane deformation after a fire. For the studied cases, the optimum cover thickness is smaller in slender columns than in stocky columns due to greater out-of-plane deformations in the former.