In the context of growing concerns over food security and climate change, research on sustainable agricultural development increasingly emphasizes the interconnections within agricultural systems. This study developed a regionally integrated optimization and prediction agricultural model to systematically analyze the impacts of climate change on agricultural systems and their feedback mechanisms from a water-energy-food-carbon (WEFC) nexus perspective. Applied to the Pearl River Basin, the model evaluates future trends in grain yield, water use, energy consumption, and carbon emissions under various climate scenarios throughout this century. The results indicate that rising temperatures significantly reduce crop yields, particularly in the western basin, increasing the environmental footprint per unit of grain produced. However, the CO2 fertilization effect substantially offsets these negative impacts. Under the SSP585 scenario, CO2 concentrations rising from 599.77 ppm to 1135.21 ppm by the century’s end led to a shift in crop yield trends from negative (Z = −7.03) to positive (Z = 11.01). This also reduces water, energy, and carbon footprints by 12.82%, 10.62%, and 10.59%, respectively. These findings highlight the critical importance of adaptive management strategies, including precision irrigation, optimized fertilizer use, and climate-resilient practices, to ensure sustainable agricultural production. Despite these insights, the model has limitations. Future research should incorporate uncertainty analysis, diverse adaptation pathways, and advanced technologies such as machine learning and remote sensing to improve predictive accuracy and applicability. This study offers valuable guidance for mitigating the adverse impacts of climate change on the WEFC nexus, supporting sustainable agricultural practices and science-based policy development.