ObjectivesDevelop predictive models for a paediatric population that provide information for paediatricians and health authorities to identify children at risk of hospitalisation for conditions that may be impacted through improved patient care.DesignRetrospective healthcare utilisation analysis with multivariable logistic regression models.DataDemographic information linked with utilisation of health services in the years 2006–2014 was used to predict risk of hospitalisation or death in 2015 using a longitudinal administrative database of 527 458 children aged 1–13 years residing in the Regione Emilia-Romagna (RER), Italy, in 2014.Outcome measuresModels designed to predict risk of hospitalisation or death in 2015 for problems that are potentially avoidable were developed and evaluated using the C-statistic, for calibration to assess performance across levels of predicted risk, and in terms of their sensitivity, specificity and positive predictive value.ResultsOf the 527 458 children residing in RER in 2014, 6391 children (1.21%) were hospitalised for selected conditions or died in 2015. 49 486 children (9.4%) of the population were classified in the ‘At Higher Risk’ group using a threshold of predicted risk >2.5%. The observed risk of hospitalisation (5%) for the ‘At Higher Risk’ group was more than four times higher than the overall population. We observed a C-statistic of 0.78 indicating good model performance. The model was well calibrated across categories of predicted risk.ConclusionsIt is feasible to develop a population-based model using a longitudinal administrative database that identifies the risk of hospitalisation for a paediatric population. The results of this model, along with profiles of children identified as high risk, are being provided to the paediatricians and other healthcare professionals providing care to this population to aid in planning for care management and interventions that may reduce their patients’ likelihood of a preventable, high-cost hospitalisation.