2019
DOI: 10.1007/978-3-030-28377-3_12
|View full text |Cite
|
Sign up to set email alerts
|

Predicting S&P 500 Based on Its Constituents and Their Social Media Derived Sentiment

Abstract: Collective intelligence, represented as sentiment extracted from social media mining, is encountered in various applications. Numerous studies involving machine learning modelling have demonstrated that such sentiment information may or may not have predictive power on the stock market trend, depending on the application and the data used. This work proposes, for the first time, an approach to predicting S&P 500 based on the closing stock prices and sentiment data of the S&P 500 constituents. One of the signif… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?