“…There are dataset available for detecting depression task from social media platform such as Twitter (Leis et al, 2019;Arora and Arora, 2019;Yazdavar et al, 2020;de Jesús Titla-Tlatelpa et al, 2021;Chiong et al, 2021;Safa et al, 2021), Reddit (de Jesús Titla-Tlatelpa et al, 2021Ríssola et al, 2019;Tadesse et al, 2019;Burdisso et al, 2019;Martínez-Castaño et al, 2020), Facebook (Chiong et al, 2021;Wongkoblap et al, 2019;Wu et al, 2020;Yang et al, 2020), Instagram (Mann et al, 2020;Ricard et al, 2018), Weibo (Li et al, 2018;Yu et al, 2021) and NHANES, K-NHANES (Oh et al, 2019). The linguistic feature extraction methods used for detecting depression signs on social media such as Word embedding (Mandelbaum and Shalev, 2016), N-grams (Cavnar et al, 1994), Tokenization (Webster andKit, 1992), Bag of words (Zhang et al, 2010;Aho and Ullman, 1972), Stemming (Jivani et al, 2011), Emotion analysis (Leis et al, 2019;Shen et al, 2017;Chen et al, 2018), Part-of-Speech (POS) tagging (Chiong et al, 2021;Wu et al, 2020), Behavior features (Wu et al, 2020) and Sentiment polarity (Leis et al, 2019;Ríssola et al, 2019).…”