SUMMARYAutomated bug localization is an important issue in software engineering. In the last few decades, various proactive and reactive localization approaches have been proposed to predict the fault-prone software modules. However, most proactive or reactive approaches need source code information or software complexity metrics to perform localization. In this paper, we propose a reactive approach which considers only bug report information and historical revision logs. In our approach, the colocation relationships among bug reports are explored to improve the prediction accuracy of a state-of-the-art learning method. Studies on three open source projects reveal that the proposed scheme can consistently improve the prediction accuracy in all three software projects by nearly 11.6% on average.