Huge amounts of data are circulating in the digital world in the era of the Industry 5.0 revolution. Machine learning is experiencing success in several sectors such as intelligent control, decision making, speech recognition, natural language processing, computer graphics, and computer vision, despite the requirement to analyze and interpret data. Due to their amazing performance, Deep Learning and Machine Learning Techniques have recently become extensively recognized and implemented by a variety of real-time engineering applications. Knowledge of machine learning is essential for designing automated and intelligent applications that can handle data in fields such as health, cyber-security, and intelligent transportation systems. There are a range of strategies in the field of machine learning, including reinforcement learning, semi-supervised, unsupervised, and supervised algorithms. This study provides a complete study of managing real-time engineering applications using machine learning, which will improve an application's capabilities and intelligence. This work adds to the understanding of the applicability of various machine learning approaches in real-world applications such as cyber security, healthcare, and intelligent transportation systems. This study highlights the research objectives and obstacles that Machine Learning approaches encounter while managing real-world applications. This study will act as a reference point for both industry professionals and academics, and from a technical standpoint, it will serve as a benchmark for decision-makers on a range of application domains and real-world scenarios.