Movie viewing allows human perception and cognition to be studied in complex, real-life-like situations in a brain-imaging laboratory. Previous studies with functional magnetic resonance imaging (fMRI) and with magneto-and electroencephalography (MEG and EEG) have demonstrated consistent temporal dynamics of brain activity across movie viewers. However, little is known about the similarities and differences of fMRI and MEG or EEG dynamics during such naturalistic situations.We thus compared MEG and fMRI responses to the same 15-min black-and-white movie in the same eight subjects who watched the movie twice during both MEG and fMRI recordings. We analyzed intra-and intersubject voxel-wise correlations within each imaging modality as well as the correlation of the MEG envelopes and fMRI signals. The fMRI signals showed voxel-wise within-and between-subjects correlations up to r ¼ 0.66 and r ¼ 0.37, respectively, whereas these correlations were clearly weaker for the envelopes of band-pass filtered (7 frequency bands below 100 Hz) MEG signals (within-subjects correlation r < 0.14 and between-subjects r < 0.05). Direct MEG-fMRI voxel-wise correlations were unreliable. Notably, applying a spatial-filtering approach to the MEG data uncovered consistent canonical variates that showed considerably stronger (up to r ¼ 0.25) betweensubjects correlations than the univariate voxel-wise analysis. Furthermore, the envelopes of the time courses of these variates up to about 10 Hz showed association with fMRI signals in a general linear model. Similarities between envelopes of MEG canonical variates and fMRI voxel time-courses were seen mostly in occipital, but also in temporal and frontal brain regions, whereas intra-and intersubject correlations for MEG and fMRI separately were strongest only in the occipital areas.In contrast to the conventional univariate analysis, the spatial-filtering approach was able to uncover associations between the MEG envelopes and fMRI time courses, shedding light on the similarities of hemodynamic and electromagnetic brain activities during movie viewing.
IntroductionA practical and ecologically valid approach to probe the neural underpinnings of perception and social cognition is to use movies as stimuli in neuroimaging experiments. Mimicking everyday situations around us, movies can provoke a wide spectrum of sensory, social, and emotional percepts that may be difficult to elicit using the highly controlled repetitive stimuli typically employed in conventional brain-imaging experiments. Despite the apparent complexity and unrestrained nature of movies, consistent and synchronized brain activity patterns across movie viewers have been demonstrated with functional magnetic resonance imaging (fMRI; e.g. Hasson et al.,