2020 ASEE Virtual Annual Conference Content Access Proceedings
DOI: 10.18260/1-2--35074
|View full text |Cite
|
Sign up to set email alerts
|

Predicting Student Degree Completion Using Random Forest

Abstract: Her research interests include statistical modeling, Operations research and Data Science. She has served as a head teaching assistant for four semesters in operations management and project management in the MS&T.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 7 publications
0
1
0
1
Order By: Relevance
“…Analisis Data Eksplorasi (EDA) mencakup serangkaian teknik dan metode analisis awal yang ditujukan untuk memperoleh pemahaman yang mendalam tentang struktur dan properti suatu kumpulan data [15] Salah satu tujuan utama EDA adalah menemukan pola-pola penting dalam data. Ini mencakup identifikasi distribusi, hubungan antarvariabel, outlier, dan tren yang dapat memberikan wawasan penting terkait dengan fenomena yang sedang diamati.…”
Section: Exploratory Data Analysis (Eda)unclassified
“…Analisis Data Eksplorasi (EDA) mencakup serangkaian teknik dan metode analisis awal yang ditujukan untuk memperoleh pemahaman yang mendalam tentang struktur dan properti suatu kumpulan data [15] Salah satu tujuan utama EDA adalah menemukan pola-pola penting dalam data. Ini mencakup identifikasi distribusi, hubungan antarvariabel, outlier, dan tren yang dapat memberikan wawasan penting terkait dengan fenomena yang sedang diamati.…”
Section: Exploratory Data Analysis (Eda)unclassified
“…Determining the factors influencing student retention and completion rates provides insight into opportunities for intentional student advising, better planning, and development of retention strategies based on student needs (Slim et al, 2014). In recent years machine learning techniques have been applied to analyze student data, which aligns with the focus of improving information processing through data mining (Cardona et al, 2019a) using methods such as neural networks (NN) (Cardona et al, 2019b) and support vector machines (SVM) (Cardona & Cudney, 2019). According to the literature, these techniques offer student dropout predictions with high confidence (Pereira & Zambrano, 2017).…”
mentioning
confidence: 99%