For both modeling and management of a reservoir, pathways to and through the seal into the overburden are of vital importance. Therefore, we suggest applying the presented structural modeling workflow that analyzes internal strain, elongation, and paleogeomorphology of the given volume. It is assumed that the magnitude of strain is a proxy for the intensity of subseismic scale fracturing. Zones of high strain may correlate with potential migration pathways. Because of the enhanced need for securing near-surface layer integrity when CO 2 storage is needed, an interpretation of three-dimensional (3-D) seismic data from the Cooperative Research Centre for Greenhouse Gas Technologies Otway site, Australia, was undertaken. The complete 3-D model was retrodeformed. Compaction-plus deformation-related strain was calculated for the whole volume. The strain distribution after 3-D restoration showed a tripartition of the study area, with the most deformation (30%-50%) in the southwest. Of 24 faults, 4 compartmentalize different zones of deformation. The paleomorphology of the seal formation is determined to tilt northward, presumably because of a much larger normal fault to the north. From horizontal extension analysis, it is evident that most deformation occurred before 66 Ma and stopped abruptly because of the production of oceanic crust in the Southern Ocean. Within