Converging evidence supports the existence of functionally and neuroanatomically distinct taxonomic (similarity-based; e.g., hammer-screwdriver) and thematic (event-based; e.g., hammer-nail) semantic systems. Processing of thematic relations between objects has been shown to selectively recruit the left posterior temporoparietal cortex. Similar posterior regions have been also been shown to be critical for knowledge of relationships between actions and manipulable human-made objects (artifacts). Based on the hypothesis that thematic relationships for artifacts are based, at least in part, on action relationships, we assessed the prediction that the same regions of the left posterior temporoparietal cortex would be critical for conceptual processing of artifact-related actions and thematic relations for artifacts. To test this hypothesis, we evaluated processing of taxonomic and thematic relations for artifact and natural objects as well as artifact action knowledge (gesture recognition) abilities in a large sample of 48 stroke patients with a range of lesion foci in the left hemisphere. Like control participants, patients identified thematic relations faster than taxonomic relations for artifacts, whereas they identified taxonomic relations faster than thematic relations for natural objects. Moreover, response times for identifying thematic relations for artifacts selectively predicted performance in gesture recognition. Whole brain Voxel Based Lesion-Symptom Mapping (VLSM) analyses and Region of Interest (ROI) regression analyses further demonstrated that lesions to the left posterior temporal cortex, overlapping with LTO and visual motion area hMT+, were associated both with relatively slower response times in identifying thematic relations for artifacts and poorer artifact action knowledge in patients. These findings provide novel insights into the functional role of left posterior temporal cortex in thematic knowledge, and suggest that the close association between thematic relations for artifacts and action representations may reflect their common dependence on visual motion and manipulation information.