Artificial neural networks (ANNs) are an emerging field with a positive and encouraging outlook. In education, it is postulated that attention and academic performance could explain reading outcomes. The main goal of this research was to study the predictive capacity of an ANN with a backpropagation algorithm by analysing the relationship between sentence and text reading comprehension efficiency, attentional variables and academic performance in third-grade primary school students (N = 183). A nonexperimental approach was adopted, using a cross-sectional and ex post facto design. Ten schools (70% public) located in southeastern Spain participated. Test of Reading Efficacy (TECLE), d2 attention test and TALE-2000 were administered. The results revealed that it is possible to design a network capable of learning by itself to predict sentence comprehension. Students who were good readers obtained better grades, concentrated better, scanned the stimulus more attentively, obtained more correct answers and made fewer omissions. The conclusions concerned the ethical implications of AI and the need to introduce ANNs in initial teacher training.
RESUMENLas redes neuronales artificiales (RNA) son un campo emergente con perspectivas positivas y alentadoras. En educación, se postula que la atención y el rendimiento académico podrían explicar los resultados de la lectura. El objetivo principal de esta investigación fue estudiar la capacidad predictiva de una RNA con un algoritmo de retropropagación a través del análisis de la relación entre la eficacia en la comprensión lectora de frases y textos, las variables atencionales y el rendimiento académico en alumnos de 3° de primaria (N = 183). Se adoptó un enfoque no experimental, utilizando un diseño transversal y ex post facto. Participaron 10 colegios (70% públicos) situados en el sureste de España, a los que se administró el Test de Eficacia Lectora (TECLE), el test de atención d2 y el TALE-2000. Los resultados revelaron que es posible diseñar una red capaz de aprender por