Advances in Patterning Materials and Processes XL 2023
DOI: 10.1117/12.2658664
|View full text |Cite
|
Sign up to set email alerts
|

Predicting the critical features of the chemically-amplified resist profile based on machine learning

Abstract: The improvement of accuracy and efficiency in simulating the profile of the chemically amplified resist (CAR) is always a key point in lithography. With the development of machine learning, many models have been successfully applied in optical proximity correction (OPC), hotspot detection, and other lithographic fields. In this work, we developed a neural network for predicting the critical features’ sizes of the CAR profile. By using a pre-calibrated physical resist model, the effectiveness of this model is d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 12 publications
0
0
0
Order By: Relevance