2023
DOI: 10.1111/meca.12420
|View full text |Cite
|
Sign up to set email alerts
|

Predicting the deterrence effect of tax audits. A machine learning approach

Abstract: We apply machine learning methods to the prediction of deterrence effects of tax audits. Based on tax declarations data, we predict the increase in future income declarations after being targeted by an audit. We find that flexible models, such as classification trees and ensemble methods based on them, outperform penalized linear models such as Lasso and ridge regression in predicting taxpayers more likely to increase their declarations after an audit. We show that despite the non-randomness of audits, their s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 37 publications
0
0
0
Order By: Relevance