Recent advances in the field of complex, transiently chaotic dynamics are reviewed, based on the results published in the focus issue of J. Phys. Complex. on this topic. One group of achievements concerns network dynamics where transient features are intimately related to the degree and stability of synchronization, as well as to the network topology. A plethora of various applications of transient chaos are described, ranging from the collective motion of active particles, through the operation of power grids, cardiac arrhythmias, and magnetohydrodynamical dynamos, to the use of machine learning to predict time evolutions. Nontraditional forms of transient chaos are also explored, such as the temporal change of the chaoticity in the transients (called doubly transient chaos), as well as transients in systems subjected to parameter drift, the paradigm of which is climate change.