We have investigated the half Heusler compounds MNiBi (M=Sc, Y), using the framework of density functional theory DFT within the full potential linearized augmented plane wave (FP-LAPW) method and studied the structural, electronic, optical and elastic properties. The structural properties are predicted using the Generalized Gradient Approximation GGA and Local Density Approximation LDA, the calculations reveal that Lattice constants and other structural parameter are better matched in GGA approximation with experimental and theoretical result than LDA approximation. The calculated band structure and the density of states (DOS) with GGA, LDA and Tran and Blaha modified Becke-Johnson (TB-mBJ) exchange-correlation potentials, indicates a semiconducting nature with indirect narrow band gaps for both compounds ScNiBi and YNiBi, it shown from result that using (TB-mBJ) functionals is much more successful than the LDA and GGA approach in estimating bandgaps for our half Heusler ScNiBi and YNiBi. Optical properties of the compounds under investigation are also reported in this paper, high absorptivity are observed in the visible and ultraviolet region. The bulk modulus, shear modulus, young’s modulus, and other elastic constants are computed to discuss their elastic properties.